If the system of linear equations $x - 2y + kz = 1$ ; $2x + y + z = 2$ ; $3x - y - kz = 3$ Has a solution $(x, y, z) \ne 0$, then $(x, y)$ lies on the straight line whose equation is
$3x -4y -1 = 0$
$4x -3y -4 = 0$
$4x -3y -1 = 0$
$3x -4y -4 = 0$
Evaluate $\left|\begin{array}{cc}x & x+1 \\ x-1 & x\end{array}\right|$
The number of solutions of the equations $x + 4y - z = 0,$ $3x - 4y - z = 0,\,x - 3y + z = 0$ is
If ${\Delta _1} = \left| {\,\begin{array}{*{20}{c}}x&b&b\\a&x&b\\a&a&x\end{array}\,} \right|$ and ${\Delta _2} = \left| {\,\begin{array}{*{20}{c}}x&b\\a&x\end{array}\,} \right|$ are the given determinants, then
Let $\mathrm{A}(-1,1)$ and $\mathrm{B}(2,3)$ be two points and $\mathrm{P}$ be a variable point above the line $A B$ such that the area of $\triangle \mathrm{PAB}$ is $10$ . If the locus of $\mathrm{P}$ is $\mathrm{ax}+\mathrm{by}=15$, then $5 a+2 b$ is :
Let $\alpha $ and $\beta $ be the roots of the equation $x^2 + x + 1 = 0.$ Then for $y \ne 0$ in $R,$ $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$ is equal to