If the system of linear equations $x - 2y + kz = 1$ ; $2x + y + z = 2$ ; $3x - y - kz = 3$ Has a solution $(x, y, z) \ne 0$, then $(x, y)$ lies on the straight line whose equation is
$3x -4y -1 = 0$
$4x -3y -4 = 0$
$4x -3y -1 = 0$
$3x -4y -4 = 0$
Statement $-1 :$Determinant of a skew-symmetric matrix of order $3$ is zero
Statement $-2 :$ For any matrix $A,$ $\det \left( {{A^T}} \right) = {\rm{det}}\left( A \right)$ and $\det \left( { - A} \right) = - {\rm{det}}\left( A \right)$ Where $\det \left( A \right) = A$. Then :
Evaluate $\left|\begin{array}{rr}2 & 4 \\ -1 & 2\end{array}\right|$
If $a, b, c$ are three complex numbers such that $a^2 + b^2 + c^2 = 0$ and $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ then value of $K$ is
Find the equation of the line joining $\mathrm{A}(1,3)$ and $\mathrm{B}(0,0)$ using determinants and find $\mathrm{k}$ if $\mathrm{D}(\mathrm{k}, 0)$ is a point such that area of triangle $\mathrm{ABD}$ is $3 \,\mathrm{sq}$ $\mathrm{units}$.
If $\alpha \neq \mathrm{a}, \beta \neq \mathrm{b}, \gamma \neq \mathrm{c}$ and $\left|\begin{array}{lll}\alpha & \mathrm{b} & \mathrm{c} \\ \mathrm{a} & \beta & \mathrm{c} \\ \mathrm{a} & \mathrm{b} & \gamma\end{array}\right|=0$,then $\frac{a}{\alpha-a}+\frac{b}{\beta-b}+\frac{\gamma}{\gamma-c}$ is equal to :